1,244 research outputs found

    Three Month Follow-Up of Patients With COVID-19 Pneumonia Complicated by Pulmonary Embolism

    Get PDF
    Background: Previous studies have demonstrated persistent dyspnoea and impairment of respiratory function in the follow-up of patients who have recovered from COVID-19 pneumonia. However, no studies have evaluated the clinical and functional consequences of COVID-19 pneumonia complicated by pulmonary embolism. Objective: The aim of our study was to assess the pulmonary function and exercise capacity in COVID-19 patients 3 months after recovery from pneumonia, either complicated or not by pulmonary embolism. Methods: This was a retrospective, single-centre, observational study involving 68 adult COVID-19 patients with a positive/negative clinical history of pulmonary embolism (PE) as a complication of COVID-19 pneumonia. Three months after recovery all patients underwent spirometry, diffusion capacity of the lungs for carbon monoxide (DLCO), and 6 minute walk test (6MWT). In addition, high-resolution computed tomography (HRCT) of the lung was carried out and CT-pulmonary angiography was conducted only in the PE+ subgroup. Patients with a previous diagnosis of PE or chronic lung diseases were excluded from the study. Results: Of the 68 patients included in the study, 24 had previous PE (PE+) and 44 did not (PE-). In comparison with the PE- subgroup, PE+ patients displayed a FVC% predicted significantly lower (87.71 ± 15.40 vs 98.7 ± 16.7, p = 0.009) and a significantly lower DLCO% predicted (p = 0.023). In addition, a higher percentage of patients were dyspnoeic on exercise, as documented by a mMRC score ≥1 (75% vs 54.3%, p < 0.001) and displayed a SpO2 <90% during 6MWT (37.5% vs 0%, p < 0.001). HRCT features suggestive of COVID-19 pneumonia resolution phase were present in both PE+ and PE- subjects without any significant difference (p = 0.24) and abnormalities at CT pulmonary angiography were detected in 57% of the PE+ subgroup. Conclusion: At the 3 month follow-up, the patients who recovered from COVID-19 pneumonia complicated by PE showed more dyspnoea and higher impairment of pulmonary function tests compared with those without PE

    Optimal and Long-Term Dynamic Transport Policy Design: Seeking Maximum Social Welfare through a Pricing Scheme.

    Full text link
    This article presents an alternative approach to the decision-making process in transport strategy design. The study explores the possibility of integrating forecasting, assessment and optimization procedures in support of a decision-making process designed to reach the best achievable scenario through mobility policies. Long-term evaluation, as required by a dynamic system such as a city, is provided by a strategic Land-Use and Transport Interaction (LUTI) model. The social welfare achieved by implementing mobility LUTI model policies is measured through a cost-benefit analysis and maximized through an optimization process throughout the evaluation period. The method is tested by optimizing a pricing policy scheme in Madrid on a cordon toll in a context requiring system efficiency, social equity and environmental quality. The optimized scheme yields an appreciable increase in social surplus through a relatively low rate compared to other similar pricing toll schemes. The results highlight the different considerations regarding mobility impacts on the case study area, as well as the major contributors to social welfare surplus. This leads the authors to reconsider the cost-analysis approach, as defined in the study, as the best option for formulating sustainability measures

    Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period

    Get PDF
    From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio

    Survival in Southern European patients waitlisted for kidney transplant after graft failure: A competing risk analysis

    Full text link
    Background Whether patients waitlisted for a second transplant after failure of a previous kidney graft have higher mortality than transplant-näive waitlisted patients is uncertain. Methods We assessed the relationship between a failed transplant and mortality in 3851 adult KT candidates, listed between 1984–2012, using a competing risk analysis in the total population and in a propensity score-matched cohort. Mortality was also modeled by inverse probability weighting (IPTW) competing risk regression. Results At waitlist entry 225 (5.8%) patients had experienced transplant failure. All-cause mortality was higher in the post-graft failure group (16% vs. 11%; P = 0.033). Most deaths occurred within three years after listing. Cardiovascular disease was the leading cause of death (25.3%), followed by infections (19.3%). Multivariate competing risk regression showed that prior transplant failure was associated with a 1.5-fold increased risk of mortality (95% confidence interval [CI], 1.01–2.2). After propensity score matching (1:5), the competing risk regression model revealed a subhazard ratio (SHR) of 1.6 (95% CI, 1.01–2.5). A similar mortality risk was observed after the IPTW analysis (SHR, 1.7; 95% CI, 1.1–2.6). Conclusions Previous transplant failure is associated with increased mortality among KT candidates after relisting. This information is important in daily clinical practice when assessing relisted patients for a retransplant.This study was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) (grant ICI14/00016) from the Instituto de Salud Carlos III co-funded by the Fondo Europeo de Desarrollo Regional±FEDER, RETICS (REDINREN RD16/0009/0006, RD16/0009/0031

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Surgical impact on brain tumor invasion: A physical perspective

    Get PDF
    It is conventional strategy to treat highly malignant brain tumors initially with cytoreductive surgery followed by adjuvant radio- and chemotherapy. However, in spite of all such efforts, the patients' prognosis remains dismal since residual glioma cells continue to infiltrate adjacent parenchyma and the tumors almost always recur. On the basis of a simple biomechanical conjecture that we have introduced previously, we argue here that by affecting the 'volume-pressure' relationship and minimizing surface tension of the remaining tumor cells, gross total resection may have an inductive effect on the invasiveness of the tumor cells left behind. Potential implications for treatment strategies are discussed

    Glaciation Effects on the Phylogeographic Structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes

    Get PDF
    The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, Bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000–13,000 years ago). Neutrality tests and the “g” parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats

    Influence of Milk-Feeding Type and Genetic Risk of Developing Coeliac Disease on Intestinal Microbiota of Infants: The PROFICEL Study

    Get PDF
    Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder
    corecore